Math 5 – Summer 2018 Mid-Term Exam 1 30 Marks Time: 75 Minutes

[1] Write the vector $\overline{U}=(xy)i+(yz)j+(x+z)k$ in the cylindrical coordinates (r,θ,z) Where $x=r\cos\theta$, $y=r\sin\theta$, z=z.

[2]By Gamma function, find the integral : $\int_0^\infty x e^{-\sqrt{x}} dx$

[3] Verify Green's theorem for : $\oint_C (2 - xy) dx + (1 + 2xy) dy$ Where C consists of : y = x, $x = y^2$.

[4] Verify the Gauss's theorem for the vector : $\overline{U} = (2x + z)i + (x + y)j + (xy)k$ through the surface of the paraboloid $x^2 + y^2 + z = 9$, $z \ge 0$.

Dr. Mohamed Eid

Math 5 – Summer 2018 Mid-Term Exam 2 20 Marks Time: 75 Minutes

[1] Determine and sketch the image of the following region under the function $f(z)=e^z \label{eq:following}$

$$0 \le x \le 1$$
, $0 \le y \le \frac{\pi}{2}$

[2] Show that $u(x,y) = y + e^x \sin y$ is harmonic and find its conjugate v(x,y).

[3] Show that: Res
$$f(z) = \frac{1}{2}$$
 where $f(z) = \frac{1}{z + \sin z}$

[4] If C is
$$|z - i| = 1$$
. Find the integrals:(a) $\oint_C \frac{\cos z}{z^2 - 9} dz$ (b) $\oint_C \frac{\sin z}{2z - i\pi} dz$

[5] If C is
$$|z| = 3$$
. Show that $\oint_C \frac{z+1}{z^2(z+2)} dz = 0$.

_ (= . -)

Dr. Mohamed Eid